Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 52
1.
Nat Biotechnol ; 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38689027

Drugs are administered at a dosing schedule set by their therapeutic index, and termination of action is achieved by clearance and metabolism of the drug. In some cases, such as anticoagulant drugs or immunotherapeutics, it is important to be able to quickly reverse the drug's action. Here, we report a general strategy to achieve on-demand reversibility by designing a supramolecular drug (a noncovalent assembly of two cooperatively interacting drug fragments held together by transient hybridization of peptide nucleic acid (PNA)) that can be reversed with a PNA antidote that outcompetes the hybridization between the fragments. We demonstrate the approach with thrombin-inhibiting anticoagulants, creating very potent and reversible bivalent direct thrombin inhibitors (Ki = 74 pM). The supramolecular inhibitor effectively inhibited thrombus formation in mice in a needle injury thrombosis model, and this activity could be reversed by administration of the PNA antidote. This design is applicable to therapeutic targets where two binding sites can be identified.

2.
Nat Commun ; 14(1): 7431, 2023 11 16.
Article En | MEDLINE | ID: mdl-37973928

Bacterial AB toxins are secreted key virulence factors that are internalized by target cells through receptor-mediated endocytosis, translocating their enzymatic domain to the cytosol from endosomes (short-trip) or the endoplasmic reticulum (long-trip). To accomplish this, bacterial AB toxins evolved a multidomain structure organized into either a single polypeptide chain or non-covalently associated polypeptide chains. The prototypical short-trip single-chain toxin is characterized by a receptor-binding domain that confers cellular specificity and a translocation domain responsible for pore formation whereby the catalytic domain translocates to the cytosol in an endosomal acidification-dependent way. In this work, the determination of the three-dimensional structure of AIP56 shows that, instead of a two-domain organization suggested by previous studies, AIP56 has three-domains: a non-LEE encoded effector C (NleC)-like catalytic domain associated with a small middle domain that contains the linker-peptide, followed by the receptor-binding domain. In contrast to prototypical single-chain AB toxins, AIP56 does not comprise a typical structurally complex translocation domain; instead, the elements involved in translocation are scattered across its domains. Thus, the catalytic domain contains a helical hairpin that serves as a molecular switch for triggering the conformational changes necessary for membrane insertion only upon endosomal acidification, whereas the middle and receptor-binding domains are required for pore formation.


Bacterial Toxins , NF-kappa B , NF-kappa B/metabolism , Bacterial Toxins/metabolism , Endocytosis , Endosomes/metabolism , Peptides/metabolism , Protein Transport
3.
mBio ; 14(4): e0063823, 2023 08 31.
Article En | MEDLINE | ID: mdl-37526476

An important feature associated with Candida albicans pathogenicity is its ability to switch between yeast and hyphal forms, a process in which CaRas1 plays a key role. CaRas1 is activated by the guanine nucleotide exchange factor (GEF) CaCdc25, triggering hyphal growth-related signaling pathways through its conserved GTP-binding (G)-domain. An important function in hyphal growth has also been proposed for the long hypervariable region downstream the G-domain, whose unusual content of polyglutamine stretches and Q/N repeats make CaRas1 unique within Ras proteins. Despite its biological importance, both the structure of CaRas1 and the molecular basis of its activation by CaCdc25 remain unexplored. Here, we show that CaRas1 has an elongated shape and limited conformational flexibility and that its hypervariable region contains helical structural elements, likely forming an intramolecular coiled-coil. Functional assays disclosed that CaRas1-activation by CaCdc25 is highly efficient, with activities up to 2,000-fold higher than reported for human GEFs. The crystal structure of the CaCdc25 catalytic region revealed an active conformation for the α-helical hairpin, critical for CaRas1-activation, unveiling a specific region exclusive to CTG-clade species. Structural studies on CaRas1/CaCdc25 complexes also revealed an interaction surface clearly distinct from that of homologous human complexes. Furthermore, we identified an inhibitory synthetic peptide, prompting the proposal of a key regulatory mechanism for CaCdc25. To our knowledge, this is the first report of specific inhibition of the CaRas1-activation via targeting its GEF. This, together with their unique pathogen-structural features, disclose a set of novel strategies to specifically block this important virulence-related mechanism. IMPORTANCE Candida albicans is the main causative agent of candidiasis, the commonest fungal infection in humans. The eukaryotic nature of C. albicans and the rapid emergence of antifungal resistance raise the challenge of identifying novel drug targets to battle this prevalent and life-threatening disease. CaRas1 and CaCdc25 are key players in the activation of signaling pathways triggering multiple virulence traits, including the yeast-to-hypha interconversion. The structural similarity of the conserved G-domain of CaRas1 to those of human homologs and the lack of structural information on CaCdc25 has impeded progress in targeting these proteins. The unique structural and functional features for CaRas1 and CaCdc25 presented here, together with the identification of a synthetic peptide capable of specifically inhibiting the GEF activity of CaCdc25, open new possibilities to uncover new antifungal drug targets against C. albicans virulence.


Candida albicans , Candidiasis , Humans , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Candidiasis/microbiology , Signal Transduction , Guanine Nucleotide Exchange Factors/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Hyphae
4.
Commun Biol ; 6(1): 108, 2023 01 27.
Article En | MEDLINE | ID: mdl-36707645

The steep increase in nontuberculous mycobacteria (NTM) infections makes understanding their unique physiology an urgent health priority. NTM synthesize two polysaccharides proposed to modulate fatty acid metabolism: the ubiquitous 6-O-methylglucose lipopolysaccharide, and the 3-O-methylmannose polysaccharide (MMP) so far detected in rapidly growing mycobacteria. The recent identification of a unique MMP methyltransferase implicated the adjacent genes in MMP biosynthesis. We report a wide distribution of this gene cluster in NTM, including slowly growing mycobacteria such as Mycobacterium avium, which we reveal to produce MMP. Using a combination of MMP purification and chemoenzymatic syntheses of intermediates, we identified the biosynthetic mechanism of MMP, relying on two enzymes that we characterized biochemically and structurally: a previously undescribed α-endomannosidase that hydrolyses MMP into defined-sized mannoligosaccharides that prime the elongation of new daughter MMP chains by a rare α-(1→4)-mannosyltransferase. Therefore, MMP biogenesis occurs through a partially conservative replication mechanism, whose disruption affected mycobacterial growth rate at low temperature.


Mycobacterium , Mycobacterium/genetics , Lipopolysaccharides , Mannosyltransferases , Methyltransferases
5.
Nucleic Acids Res ; 50(D1): D480-D487, 2022 01 07.
Article En | MEDLINE | ID: mdl-34850135

The Database of Intrinsically Disordered Proteins (DisProt, URL: https://disprot.org) is the major repository of manually curated annotations of intrinsically disordered proteins and regions from the literature. We report here recent updates of DisProt version 9, including a restyled web interface, refactored Intrinsically Disordered Proteins Ontology (IDPO), improvements in the curation process and significant content growth of around 30%. Higher quality and consistency of annotations is provided by a newly implemented reviewing process and training of curators. The increased curation capacity is fostered by the integration of DisProt with APICURON, a dedicated resource for the proper attribution and recognition of biocuration efforts. Better interoperability is provided through the adoption of the Minimum Information About Disorder (MIADE) standard, an active collaboration with the Gene Ontology (GO) and Evidence and Conclusion Ontology (ECO) consortia and the support of the ELIXIR infrastructure.


Databases, Protein , Intrinsically Disordered Proteins/metabolism , Molecular Sequence Annotation , Software , Amino Acid Sequence , DNA/genetics , DNA/metabolism , Datasets as Topic , Gene Ontology , Humans , Internet , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/genetics , Protein Binding , RNA/genetics , RNA/metabolism
6.
Chem Commun (Camb) ; 57(83): 10923-10926, 2021 Oct 19.
Article En | MEDLINE | ID: mdl-34596182

Tyrosine sulfation is an important post-translational modification of peptides and proteins which underpins and modulates many protein-protein interactions. In order to overcome the inherent instability of the native modification, we report the synthesis of two sulfonate analogues and their incorporation into two thrombin-inhibiting sulfopeptides. The effective mimicry of these sulfonate analogues for native sulfotyrosine was validated in the context of their thrombin inhibitory activity and binding mode, as determined by X-ray crystallography.


Antithrombins/chemistry , Peptides/chemistry , Thrombin/antagonists & inhibitors , Tyrosine/analogs & derivatives , Antithrombins/chemical synthesis , Antithrombins/metabolism , Crystallography, X-Ray , Enzyme Assays , Humans , Peptides/chemical synthesis , Peptides/metabolism , Protein Binding , Thrombin/metabolism , Tyrosine/chemistry
7.
J Med Chem ; 64(11): 7853-7876, 2021 06 10.
Article En | MEDLINE | ID: mdl-34044534

The contact system comprises a series of serine proteases that mediate procoagulant and proinflammatory activities via the intrinsic pathway of coagulation and the kallikrein-kinin system, respectively. Inhibition of Factor XIIa (FXIIa), an initiator of the contact system, has been demonstrated to lead to thrombo-protection and anti-inflammatory effects in animal models and serves as a potentially safer target for the development of antithrombotics. Herein, we describe the use of the Randomised Nonstandard Peptide Integrated Discovery (RaPID) mRNA display technology to identify a series of potent and selective cyclic peptide inhibitors of FXIIa. Cyclic peptides were evaluated in vitro, and three lead compounds exhibited significant prolongation of aPTT, a reduction in thrombin generation, and an inhibition of bradykinin formation. We also describe our efforts to identify the critical residues for binding FXIIa through alanine scanning, analogue generation, and via in silico methods to predict the binding mode of our lead cyclic peptide inhibitors.


Factor XIIa/antagonists & inhibitors , Peptides, Cyclic/chemistry , RNA, Messenger/metabolism , Serine Proteinase Inhibitors/chemistry , Binding Sites , Factor XIIa/metabolism , Gene Library , Genetic Code , Humans , Inhibitory Concentration 50 , Kallikreins/chemistry , Kallikreins/metabolism , Molecular Dynamics Simulation , Partial Thromboplastin Time , Peptides, Cyclic/metabolism , Protein Stability , Prothrombin Time , Puromycin/chemistry , RNA, Messenger/chemistry , Serine Proteinase Inhibitors/metabolism , Structure-Activity Relationship
8.
mSphere ; 6(1)2021 02 03.
Article En | MEDLINE | ID: mdl-33536321

Peptidoglycan (PG) is a major component of the bacterial cell wall, forming a mesh-like structure enwrapping the bacteria that is essential for maintaining structural integrity and providing support for anchoring other components of the cell envelope. PG biogenesis is highly dynamic and requires multiple enzymes, including several hydrolases that cleave glycosidic or amide bonds in the PG. This work describes the structural and functional characterization of an NlpC/P60-containing peptidase from Photobacterium damselae subsp. piscicida (Phdp), a Gram-negative bacterium that causes high mortality of warm-water marine fish with great impact for the aquaculture industry. PnpA ( PhotobacteriumNlpC-like protein A) has a four-domain structure with a hydrophobic and narrow access to the catalytic center and specificity for the γ-d-glutamyl-meso-diaminopimelic acid bond. However, PnpA does not cleave the PG of Phdp or PG of several Gram-negative and Gram-positive bacterial species. Interestingly, it is secreted by the Phdp type II secretion system and degrades the PG of Vibrio anguillarum and Vibrio vulnificus This suggests that PnpA is used by Phdp to gain an advantage over bacteria that compete for the same resources or to obtain nutrients in nutrient-scarce environments. Comparison of the muropeptide composition of PG susceptible and resistant to the catalytic activity of PnpA showed that the global content of muropeptides is similar, suggesting that susceptibility to PnpA is determined by the three-dimensional organization of the muropeptides in the PG.IMPORTANCE Peptidoglycan (PG) is a major component of the bacterial cell wall formed by long chains of two alternating sugars interconnected by short peptides, generating a mesh-like structure that enwraps the bacterial cell. Although PG provides structural integrity and support for anchoring other components of the cell envelope, it is constantly being remodeled through the action of specific enzymes that cleave or join its components. Here, it is shown that Photobacterium damselae subsp. piscicida, a bacterium that causes high mortality in warm-water marine fish, produces PnpA, an enzyme that is secreted into the environment and is able to cleave the PG of potentially competing bacteria, either to gain a competitive advantage and/or to obtain nutrients. The specificity of PnpA for the PG of some bacteria and its inability to cleave others may be explained by differences in the structure of the PG mesh and not by different muropeptide composition.


Bacteria/metabolism , Endopeptidases/metabolism , Peptidoglycan/metabolism , Photobacterium/enzymology , Photobacterium/metabolism , Animals , Cell Wall/chemistry , Cell Wall/metabolism , Endopeptidases/analysis , Endopeptidases/chemistry , Endopeptidases/genetics , Fishes/microbiology , Photobacterium/genetics
9.
SLAS Discov ; 26(3): 373-382, 2021 03.
Article En | MEDLINE | ID: mdl-32981414

The throughput level currently reached by automatic liquid handling and assay monitoring techniques is expected to facilitate the discovery of new modulators of enzyme activity. Judicious and dependable ways to interpret vast amounts of information are, however, required to effectively answer this challenge. Here, the 3-point method of kinetic analysis is proposed as a means to significantly increase the hit success rates and decrease the number of falsely identified compounds (false positives). In this post-Michaelis-Menten approach, each screened reaction is probed in three different occasions, none of which necessarily coincide with the initial period of constant velocity. Enzymology principles rather than subjective criteria are applied to identify unwanted outliers such as assay artifacts, and then to accurately distinguish true enzyme modulation effects from false positives. The exclusion and selection criteria are defined based on the 3-point reaction coordinates, whose relative positions along the time-courses may change from well to well or from plate to plate, if necessary. The robustness and efficiency of the new method is illustrated during a small drug repurposing screening of potential modulators of the deubiquinating activity of ataxin-3, a protein implicated in Machado-Joseph disease. Apparently, intractable Z factors are drastically enhanced after (1) eliminating spurious results, (2) improving the normalization method, and (3) increasing the assay resilience to systematic and random variability. Numerical simulations further demonstrate that the 3-point analysis is highly sensitive to specific, catalytic, and slow-onset modulation effects that are particularly difficult to detect by typical endpoint assays.


Enzyme Activators/pharmacology , Enzyme Inhibitors/pharmacology , Enzymes/chemistry , High-Throughput Screening Assays , Artifacts , Ataxin-3/chemistry , Coumarins/chemistry , Deubiquitinating Enzymes/chemistry , Drug Discovery/methods , Drug Repositioning , Enzyme Activators/chemistry , Enzyme Inhibitors/chemistry , Humans , Kinetics , Repressor Proteins/chemistry , Sensitivity and Specificity , Ubiquitin/chemistry
10.
J Mol Biol ; 433(11): 166613, 2021 05 28.
Article En | MEDLINE | ID: mdl-32768452

Enzymatic assays are widely employed to characterize important allosteric and enzyme modulation effects. The high sensitivity of these assays can represent a serious problem if the occurrence of experimental errors surreptitiously affects the reliability of enzyme kinetics results. We have addressed this problem and found that hidden assay interferences can be unveiled by the graphical representation of progress curves in modified reaction coordinates. To render this analysis accessible to users across all levels of expertise, we have developed a webserver, interferENZY, that allows (i) an unprecedented tight quality control of experimental data, (ii) the automated identification of small and major assay interferences, and (iii) the estimation of bias-free kinetic parameters. By eliminating the subjectivity factor in kinetic data reporting, interferENZY will contribute to solving the "reproducibility crisis" that currently challenges experimental molecular biology. The interferENZY webserver is freely available (no login required) at https://interferenzy.i3s.up.pt.


Enzyme Assays/methods , Enzyme Assays/standards , Internet , Software , Animals , Automation , Biocatalysis , Chickens , Kinetics , Muramidase/metabolism , Quality Control , Reference Standards , Substrate Specificity , Time Factors
11.
Cell Chem Biol ; 28(1): 26-33.e8, 2021 01 21.
Article En | MEDLINE | ID: mdl-33096052

Despite possessing only 32 residues, the tsetse thrombin inhibitor (TTI) is among the most potent anticoagulants described, with sub-picomolar inhibitory activity against thrombin. Unexpectedly, TTI isolated from the fly is 2000-fold more active and 180 Da heavier than synthetic and recombinant variants. We predicted the presence of a tyrosine O-sulfate post-translational modification of TTI, prompting us to investigate the effect of the modification on anticoagulant activity. A combination of chemical synthesis and functional assays was used to reveal that sulfation significantly improved the inhibitory activity of TTI against thrombin. Using X-ray crystallography, we show that the N-terminal sulfated segment of TTI binds the basic exosite II of thrombin, establishing interactions similar to those of physiologic substrates, while the C-terminal segment abolishes the catalytic activity of thrombin. This non-canonical mode of inhibition, coupled with its potency and small size, makes TTI an attractive scaffold for the design of novel antithrombotics.


Anticoagulants/pharmacology , Antithrombin Proteins/pharmacology , Insect Proteins/pharmacology , Thrombin/antagonists & inhibitors , Tyrosine/analogs & derivatives , Animals , Anticoagulants/chemical synthesis , Anticoagulants/chemistry , Antithrombin Proteins/chemical synthesis , Antithrombin Proteins/chemistry , Cell Line , Humans , Insect Proteins/chemical synthesis , Insect Proteins/chemistry , Molecular Structure , Thrombin/metabolism , Tsetse Flies , Tyrosine/chemical synthesis , Tyrosine/chemistry , Tyrosine/pharmacology
12.
Angew Chem Int Ed Engl ; 60(10): 5348-5356, 2021 03 01.
Article En | MEDLINE | ID: mdl-33345438

Blood feeding arthropods, such as leeches, ticks, flies and mosquitoes, provide a privileged source of peptidic anticoagulant molecules. These primarily operate through inhibition of the central coagulation protease thrombin by binding to the active site and either exosite I or exosite II. Herein, we describe the rational design of a novel class of trivalent thrombin inhibitors that simultaneously block both exosites as well as the active site. These engineered hybrids were synthesized using tandem diselenide-selenoester ligation (DSL) and native chemical ligation (NCL) reactions in one-pot. The most potent trivalent inhibitors possessed femtomolar inhibition constants against α-thrombin and were selective over related coagulation proteases. A lead hybrid inhibitor possessed potent anticoagulant activity, blockade of both thrombin generation and platelet aggregation in vitro and efficacy in a murine thrombosis model at 1 mg kg-1 . The rational engineering approach described here lays the foundation for the development of potent and selective inhibitors for a range of other enzymatic targets that possess multiple sites for the disruption of protein-protein interactions, in addition to an active site.


Anticoagulants/therapeutic use , Platelet Aggregation Inhibitors/therapeutic use , Salivary Proteins and Peptides/therapeutic use , Thrombosis/drug therapy , Amblyomma/chemistry , Animals , Anopheles/chemistry , Anticoagulants/chemical synthesis , Anticoagulants/metabolism , Catalytic Domain , Humans , Male , Mice, Inbred C57BL , Platelet Aggregation Inhibitors/chemical synthesis , Platelet Aggregation Inhibitors/metabolism , Protein Binding , Protein Engineering , Salivary Proteins and Peptides/chemical synthesis , Salivary Proteins and Peptides/metabolism , Thrombin/chemistry , Thrombin/metabolism , Tsetse Flies/chemistry
13.
Front Mol Neurosci ; 13: 582488, 2020.
Article En | MEDLINE | ID: mdl-33328883

Reports on phase separation and amyloid formation for multiple proteins and aggregation-prone peptides are recurrently used to explore the molecular mechanisms associated with several human diseases. The information conveyed by these reports can be used directly in translational investigation, e.g., for the design of better drug screening strategies, or be compiled in databases for benchmarking novel aggregation-predicting algorithms. Given that minute protocol variations determine different outcomes of protein aggregation assays, there is a strong urge for standardized descriptions of the different types of aggregates and the detailed methods used in their production. In an attempt to address this need, we assembled the Minimum Information Required for Reproducible Aggregation Experiments (MIRRAGGE) guidelines, considering first-principles and the established literature on protein self-assembly and aggregation. This consensus information aims to cover the major and subtle determinants of experimental reproducibility while avoiding excessive technical details that are of limited practical interest for non-specialized users. The MIRRAGGE table (template available in Supplementary Information) is useful as a guide for the design of new studies and as a checklist during submission of experimental reports for publication. Full disclosure of relevant information also enables other researchers to reproduce results correctly and facilitates systematic data deposition into curated databases.

14.
Phys Chem Chem Phys ; 22(28): 16143-16149, 2020 Jul 22.
Article En | MEDLINE | ID: mdl-32638771

When placed in the same environment, biochemically unrelated macromolecules influence each other's biological function through macromolecular crowding (MC) effects. This has been illustrated in vitro by the effects of inert polymers on protein stability, protein structure, enzyme kinetics and protein aggregation kinetics. While a unified way to quantitatively characterize MC is still lacking, we show that the crystal solubility of lysozyme can be used to predict the influence of crowding agents on the catalytic efficiency of this enzyme. In order to capture general enthalpic effects, as well as hard entropic effects that are specific of large molecules, we tested sucrose and its cross-linked polymer Ficoll-70 as additives. Despite the different conditions of pH and ionic strength adopted, both the crystallization and the enzymatic assays point to an entropic contribution of approximately -1 kcal mol-1 caused by MC. Our results demonstrate that the thermodynamic activity of proteins is markedly increased by the reduction of accessible volume caused by the presence of macromolecular cosolutes. Unlike what is observed in protein folding studies, this MC effect cannot be reproduced using equivalent concentrations of monomeric crowding units. Applicable to any crystallizable protein, the thermodynamic interpretation of MC based on crystal solubility is expected to help in elucidating the full extent and importance of hard-type interactions in the crowded environment of the cell.


Macromolecular Substances/metabolism , Muramidase/metabolism , Crystallography, X-Ray , Hydrogen-Ion Concentration , Macromolecular Substances/chemistry , Models, Molecular , Muramidase/chemistry , Osmolar Concentration , Solubility , Thermodynamics
15.
Biochem J ; 477(3): 601-614, 2020 02 14.
Article En | MEDLINE | ID: mdl-31913441

The pro-oxidant effect of free heme (Fe2+-protoporphyrin IX) is neutralized by phylogenetically-conserved heme oxygenases (HMOX) that generate carbon monoxide, free ferrous iron, and biliverdin (BV) tetrapyrrole(s), with downstream BV reduction by non-redundant NADPH-dependent BV reductases (BLVRA and BLVRB) that retain isomer-restricted functional activity for bilirubin (BR) generation. Regioselectivity for the heme α-meso carbon resulting in predominant BV IXα generation is a defining characteristic of canonical HMOXs, thereby limiting generation and availability of BVs IXß, IXδ, and IXγ as BLVRB substrates. We have now exploited the unique capacity of the Pseudomonas aeruginosa (P. aeruginosa) hemO/pigA gene for focused generation of isomeric BVs (IXß and IXδ). A scalable system followed by isomeric separation yielded highly pure samples with predicted hydrogen-bonded structure(s) as documented by 1H NMR spectroscopy. Detailed kinetic studies established near-identical activity of BV IXß and BV IXδ as BLVRB-selective substrates, with confirmation of an ordered sequential mechanism of BR/NADP+ dissociation. Halogenated xanthene-based compounds previously identified as BLVRB-targeted flavin reductase inhibitors displayed comparable inhibition parameters using BV IXß as substrate, documenting common structural features of the cofactor/substrate-binding pocket. These data provide further insights into structure/activity mechanisms of isomeric BVs as BLVRB substrates, with potential applicability to further dissect redox-regulated functions in cytoprotection and hematopoiesis.


Biliverdine , Heme Oxygenase (Decyclizing) , Heme/metabolism , Pseudomonas aeruginosa/metabolism , Biliverdine/chemistry , Biliverdine/metabolism , Genes, Bacterial/physiology , Heme Oxygenase (Decyclizing)/chemistry , Heme Oxygenase (Decyclizing)/genetics , Heme Oxygenase (Decyclizing)/metabolism , Kinetics , Oxidation-Reduction , Oxidoreductases/metabolism , Pseudomonas aeruginosa/genetics
16.
IUCrJ ; 6(Pt 4): 572-585, 2019 Jul 01.
Article En | MEDLINE | ID: mdl-31316802

Bacteria are challenged to adapt to environmental variations in order to survive. Under nutritional stress, several bacteria are able to slow down their metabolism into a nonreplicating state and wait for favourable conditions. It is almost universal that bacteria accumulate carbon stores to survive during this nonreplicating state and to fuel rapid proliferation when the growth-limiting stress disappears. Mycobacteria are exceedingly successful in their ability to become dormant under harsh circumstances and to be able to resume growth when conditions are favourable. Rapidly growing mycobacteria accumulate glucosylglycerate under nitrogen-limiting conditions and quickly mobilize it when nitrogen availability is restored. The depletion of intracellular glucosyl-glycerate levels in Mycolicibacterium hassiacum (basonym Mycobacterium hassiacum) was associated with the up-regulation of the gene coding for glucosylglycerate hydrolase (GgH), an enzyme that is able to hydrolyse glucosylglycerate to glycerate and glucose, a source of readily available energy. Highly conserved among unrelated phyla, GgH is likely to be involved in bacterial reactivation following nitrogen starvation, which in addition to other factors driving mycobacterial recovery may also provide an opportunity for therapeutic intervention, especially in the serious infections caused by some emerging opportunistic pathogens of this group, such as Mycobacteroides abscessus (basonym Mycobacterium abscessus). Using a combination of biochemical methods and hybrid structural approaches, the oligomeric organization of M. hassiacum GgH was determined and molecular determinants of its substrate binding and specificity were unveiled.

17.
Biophys Chem ; 252: 106193, 2019 09.
Article En | MEDLINE | ID: mdl-31195341

Enzymes are among the most important drug targets in the pharmaceutical industry. The bioassays used to screen enzyme modulators can be affected by unaccounted interferences such as time-dependent inactivation and inhibition effects. Using procaspase-3, caspase-3, and α-thrombin as model enzymes, we show that some of these effects are not eliminated by merely ignoring the reaction phases that follow initial-rate measurements. We thus propose a linearization method (LM) for detecting spurious changes of enzymatic activity based on the representation of progress curves in modified coordinates. This method is highly sensitive to signal readout distortions, thereby allowing rigorous selection of valid kinetic data. The method allows the detection of assay interferences even when their occurrence is not suspected a priori. By knowing the assets and liabilities of the bioassay, enzymology results can be reported with enhanced reproducibility and accuracy. Critical analysis of full progress curves is expected to help discriminating experimental artifacts from true mechanisms of enzymatic inhibition.


Caspase 3/analysis , Enzyme Assays , Thrombin/analysis , Caspase 3/biosynthesis , Caspase 3/metabolism , Humans , Recombinant Proteins/analysis , Recombinant Proteins/biosynthesis , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Thrombin/antagonists & inhibitors , Thrombin/metabolism
18.
Proc Natl Acad Sci U S A ; 116(28): 13873-13878, 2019 07 09.
Article En | MEDLINE | ID: mdl-31221752

Hematophagous organisms produce a suite of salivary proteins which interact with the host's coagulation machinery to facilitate the acquisition and digestion of a bloodmeal. Many of these biomolecules inhibit the central blood-clotting serine proteinase thrombin that is also the target of several clinically approved anticoagulants. Here a bioinformatics approach is used to identify seven tick proteins with putative thrombin inhibitory activity that we predict to be posttranslationally sulfated at two conserved tyrosine residues. To corroborate the biological role of these molecules and investigate the effects of amino acid sequence and sulfation modifications on thrombin inhibition and anticoagulant activity, a library of 34 homogeneously sulfated protein variants were rapidly assembled using one-pot diselenide-selenoester ligation (DSL)-deselenization chemistry. Downstream functional characterization validated the thrombin-directed activity of all target molecules and revealed that posttranslational sulfation of specific tyrosine residues crucially modulates potency. Importantly, access to this homogeneously modified protein library not only enabled the determination of key structure-activity relationships and the identification of potent anticoagulant leads, but also revealed subtleties in the mechanism of thrombin inhibition, between and within the families, that would be impossible to predict from the amino acid sequence alone. The synthetic platform described here therefore serves as a highly valuable tool for the generation and thorough characterization of libraries of related peptide and/or protein molecules (with or without modifications) for the identification of lead candidates for medicinal chemistry programs.


Anticoagulants/chemistry , Insect Proteins/chemistry , Salivary Proteins and Peptides/chemistry , Thrombin/chemistry , Amino Acid Sequence/genetics , Blood Coagulation/genetics , Computational Biology , Gene Library , Humans , Insect Proteins/genetics , Protein Processing, Post-Translational/genetics , Salivary Proteins and Peptides/genetics , Structure-Activity Relationship , Thrombin/antagonists & inhibitors , Thrombin/genetics , Tyrosine/chemistry
19.
mBio ; 10(3)2019 05 14.
Article En | MEDLINE | ID: mdl-31088917

Actinobacteria have long been the main source of antibiotics, secondary metabolites with tightly controlled biosynthesis by environmental and physiological factors. Phosphorylation of exogenous glucosamine has been suggested as a mechanism for incorporation of this extracellular material into secondary metabolite biosynthesis, but experimental evidence of specific glucosamine kinases in Actinobacteria is lacking. Here, we present the molecular fingerprints for the identification of a unique family of actinobacterial glucosamine kinases. Structural and biochemical studies on a distinctive kinase from the soil bacterium Streptacidiphilus jiangxiensis unveiled its preference for glucosamine and provided structural evidence of a phosphoryl transfer to this substrate. Conservation of glucosamine-contacting residues across a large number of uncharacterized actinobacterial proteins unveiled a specific glucosamine binding sequence motif. This family of kinases and their genetic context may represent the missing link for the incorporation of environmental glucosamine into the antibiotic biosynthesis pathways in Actinobacteria and can be explored to enhance antibiotic production.IMPORTANCE The discovery of novel enzymes involved in antibiotic biosynthesis pathways is currently a topic of utmost importance. The high levels of antibiotic resistance detected worldwide threaten our ability to combat infections and other 20th-century medical achievements, namely, organ transplantation or cancer chemotherapy. We have identified and characterized a unique family of enzymes capable of phosphorylating glucosamine to glucosamine-6-phosphate, a crucial molecule directly involved in the activation of antibiotic production pathways in Actinobacteria, nature's main source of antimicrobials. The consensus sequence identified for these glucosamine kinases will help establish a molecular fingerprint to reveal yet-uncharacterized sequences in antibiotic producers, which should have an important impact in biotechnological and biomedical applications, including the enhancement and optimization of antibiotic production.


Actinobacteria/enzymology , Actinobacteria/genetics , Glucosamine/analogs & derivatives , Glucose-6-Phosphate/analogs & derivatives , Phosphotransferases/genetics , Phosphotransferases/metabolism , Anti-Bacterial Agents/biosynthesis , DNA Fingerprinting , Glucosamine/metabolism , Glucose-6-Phosphate/metabolism , Phosphorylation , Protein Binding , RNA, Ribosomal, 16S/genetics , Soil Microbiology
20.
Biochim Biophys Acta Proteins Proteom ; 1867(6): 654-661, 2019 06.
Article En | MEDLINE | ID: mdl-30797104

The human fungal pathogen Candida albicans ambiguously decodes the universal leucine CUG codon predominantly as serine but also as leucine. C. albicans has a high capacity to survive and proliferate in adverse environments but the rate of leucine incorporation fluctuates in response to different stress conditions. C. albicans is adapted to tolerate this ambiguous translation through a mechanism that combines drastic decrease in CUG usage and reduction of CUG-encoded residues in conserved positions in the protein sequences. However, in a few proteins, the residues encoded by CUG codons are found in strictly conserved positions, suggesting that this genetic code alteration might have a functional impact. One such example is Cek1, a central signaling protein kinase that contains a single CUG-encoded residue at a conserved position, whose identity might regulate the correct flow of information across the MAPK cascade. Here we show that insertion of a leucine at the CUG-encoded position decreases the stability of Cek1, apparently without major structural alterations. In contrast, incorporation of a serine residue at the CUG position induces the autophosphorylation of the conserved tyrosine residue of the Cek1 231TEY233 motif, and increases its intrinsic kinase activity in vitro. These findings show that CUG ambiguity modulates the activity of Cek1, a key kinase directly linked to morphogenesis and virulence in C. albicans.


Candida albicans/enzymology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/metabolism , Candida albicans/genetics , Candida albicans/growth & development , Candida albicans/pathogenicity , Cell Wall/physiology , Genetic Code , Leucine/genetics , Leucine/metabolism , Phosphorylation , Protein Biosynthesis , Serine/genetics , Serine/metabolism , Signal Transduction , Tyrosine/genetics , Tyrosine/metabolism , Virulence
...